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Abstract
We discuss a recent bosonization method developed to study clean Fermi gases
with repulsion in any dimensions. The method enables one to consider both
density and spin excitations. It is demonstrated that due to a non-Abelian
structure of the effective theory, the spin excitations interact with each other,
which leads to new logarithmic in temperature corrections to physical quantities.
Using a renormalization group scheme constructed for the effective low energy
field theory these logarithms are summed up in all orders. Temperature
dependent corrections to the specific heat and spin susceptibility are obtained
for all dimensions d = 1, 2, 3.

1. Introduction

The Landau theory of the Fermi liquid (FL) [1] is by now one of the most established
theories describing a system of interacting fermions. The main statement of this theory
is that the low energy behaviour of the system is similar to that for the ideal Fermi gas.
This gives a possibility to discuss experimental systems omitting the interactions and using
phenomenological constants for the effective mass of the particles, density of states at the Fermi
surface and other physical quantities.

A phenomenological description of the FL developed in the first works [1] was supported
by a diagrammatic analysis [2], which was a very good confirmation. However, the microscopic
Landau theory of [2] is based on a very strong assumption that one can single out a singular
particle–hole channel and sum proper ladder diagrams. Irreducible vertices entering the ladder
diagrams should remain finite and be analytic in the limit of small momenta and frequencies.
It is generally believed that for a Fermi gas with repulsion this assumption is correct and such
a system should behave as the Fermi liquid in dimensions d > 1.

Of course, the similarity between the FL and ideal Fermi gas cannot be exact and there
should be corrections at finite temperatures, frequencies or momenta. Study of unconventional
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metals like high temperature superconductors, heavy fermion materials, etc, have revealed
considerable deviations of their properties from those predicted by the FL. As a result, quite a
few theoretical works have appeared recently where the Landau FL theory was discussed [3–7].

The corrections to physical quantities become especially interesting when they are non-
analytic functions of temperature, frequency or momentum. This means that physical quantities
like C(T )/T , where C(T ) is the specific heat and T is the temperature, χ(T ), where χ(T ) is
the spin susceptibility, etc, cannot be represented at low temperatures as a series in T 2, which
contrasts with the ideal Fermi gas. Such non-analytical corrections were studied in a number
of publications using diagrammatic expansions in the electron–electron interaction [8–18]. As
a result of this investigation, it is well known by now that in d = 3 the next-to-leading term in
C(T )/T is proportional to T 2 ln T [8–11]. In 2D, the non-analytical corrections to C(T )/T
and χ(T, Q) scale as T and max{T, v0 Q}, respectively (Q is the wavevector of the external
magnetic field) [13–19].

The existence of the non-analytic corrections to the physical quantities is not accidental. In
fact, all the singular corrections to the thermodynamic quantities may be understood in terms of
contributions of low lying collective excitations; see, e.g., [19, 17]. At the same time, explicit
calculations with the conventional diagrammatic technique are not simple already in the lowest
orders of the perturbation theory. Therefore, selecting diagrams in order to group them into the
collective modes is a rather difficult task.

In this paper we present a new method of calculations for a clean Fermi gas with a repulsion
that enables us to ‘integrate out’ electron degrees of freedom at the beginning of all calcula-
tions and reduce the initial fermionic model to a model of low lying excitations. The method is
based on using equations for quasiclassical Green functions and includes both the density and
spin excitations. We loosely call our method bosonization but it differs from earlier higher di-
mensional bosonization schemes [20–22, 6, 23–28, 5] based on the assumption of a long range
electron–electron interaction. As a result, only density excitations were considered, while the
spin excitations were not included in these schemes (to be more precise, the spin excitations are
not affected by the long range interaction and therefore they were not included in the scheme).

The density excitations are described by a scalar function and the effective interaction
Vc(k, ω) between them vanishes in the limit ω, k → 0. This means that the interaction may
lead only to a renormalization of parameters characterizing physical quantities (unless Vc(k, ω)

is long ranged) and not to new effects. In other words, the bosonization of [20–22, 6, 23–28, 5]
enables one to reduce a system with a long range interaction to a model of free bosons, which
is very similar to writing the Tomonaga–Luttinger model for one dimensional electron systems
(see e.g. [29]). This method is often referred to as bosonization.

What we want to present now is a scheme that enables one to consider for arbitrary
interactions both the density and spin excitations on equal footing. The relevant variable
describing the spin excitations is a 2×2 matrix and our method resembles to some extent a non-
Abelian bosonization. The effective interaction between the spin excitations does not vanish
in the limit ω, k → 0 and leads to new logarithmic contributions to scattering amplitudes
coming from low energies of the order of T . As a result, physical quantities depend on the
logarithmically renormalized amplitudes, which changes their temperature dependence. It is
important to emphasize that the ‘infrared’ logarithmic divergences that we find in the limit
T → 0 exist in any dimensions (including d = 1) and have nothing in common with the
‘ultraviolet’ logarithmic divergence (divergence originating from short distances) discussed for
2D systems long ago [30]. The latter does not lead to any additional dependence on temperature
and can be absorbed into parameters characterizing the FL.

We display in the subsequent sections the main idea of our method and new results that
have been obtained recently. In section 2 we make a Hubbard–Stratonovich transformation and
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derive quasiclassical equations for the density and spin excitations representing their solution
in terms of an integral over supervectors. The interaction between the spin excitations gives
logarithms that are summed in section 3 using a new renormalization group (RG) scheme. We
calculate the specific heat and spin susceptibility in section 4 and discuss the results in section 5.

The method and the calculation of the specific heat were presented for the first time in [31].
Using this method the calculation of the spin susceptibility was carried out later in [32]. Our
presentation here is based on these publications but we concentrate rather on explaining the
main steps of the derivation than on explicit calculations. All necessary details can be found
in [31, 32].

2. Spin and density excitations and their contribution to thermodynamics

2.1. Singling out slow pairs and Hubbard–Stratonovich transformation

In this section we show how one can reduce calculation of the partition function of the
interacting fermions to calculation of the partition function of the density and spin excitations.
It will be demonstrated that the density excitations are described by a model of free bosons,
whereas spin excitations interact with each other.

We start the discussion writing the original partition function Z in terms of a functional
integral over classical anticommuting variables χσ (x) (x = {r, τ } and σ labels the spin)

Z =
∫

exp(−S)Dχ Dχ∗. (1)

The action S entering equation (1) has the form

S = S0 + Sint, (2)

where the term S0,

S0 =
∑
σ

∫
χ∗
σ (x)

(
− ∂

∂τ
− p̂2

2m
+ εF

)
χσ (x) dx (3)

stands for the action of free fermions (εF is the Fermi energy, m is the mass and p̂ is the
momentum operator). Equations (2) and (3) are written in the Matsubara representation with
the imaginary time τ , such that the field variables χ(r, τ ) are antiperiodic in τ

χ(r, τ ) = −χ(r, τ + 1/T ). (4)

The term Sint in equation (2) describes the fermion–fermion interaction,

Sint = 1
2

∑
σ,σ ′

∫
χ∗
σ (x)χ

∗
σ ′(x ′)v(x − x ′)χσ ′(x ′)χσ (x) dx dx ′, (5)

where v(x − x ′) = V (r − r′)δ(τ − τ ′) and V (r − r′) is the potential of the interaction.
The presence of a magnetic field b acting on spin can be accounted for by adding an

addition term Sb to the action

Sb =
∫

dx χ∗
σ (x)bσ σσ ′χσ ′(x). (6)

Inclusion of this term is necessary for calculation of the spin susceptibility χ(T ).
The functional integral over χσ (x) in equation (1) is too complicated to be calculated

exactly and we restrict ourselves to the case of a weak interaction. A stronger interaction may
renormalize the coupling constants but does not seem to change the temperature behaviour.
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In order to reduce the fermionic model to the model of the low lying excitations we single
out in the interaction term Sint, equation (5), pairs χ∗χ slowly varying in space and write the
effective interaction Sint as

Sint→ 1
2

∑
σ,σ ′

∫
dP1 dP2 dK {V2χ

∗
σ (P1)χσ (P1 + K )χ∗

σ ′(P2)χσ ′(P2 − K )

− V1(p1 − p2)χ
∗
σ (P1)χσ ′(P1 + K )χ∗

σ ′(P2)χσ (P2 − K )}. (7)

In equation (7), Pi = (pi , εni ), where pi is the momentum and εni = πT (2ni + 1) are
Matsubara fermionic frequencies (i = 1, 2). As concerns K , it has the form K = (k, ωn),
where ωn = 2πT n are Matsubara bosonic frequencies.

The symbols of the integration
∫

dPi and
∫

dK in equation (7) read as follows
∫

dPi (· · ·) = T
∑
εni

dd p
(2π)d

(· · ·),
∫

dK (· · ·) = T
∑
ωn �=0

f (k)
ddk

(2π)d
(· · ·) (8)

where

f (k) = f0(kr0) (9)

and k = |k|. The function f0(t) has the following asymptotics: f0(t) = 1 at t = 0 and
f (t) → 0 at t → ∞.

The function f (k) in equation (9) is written in order to cut off large momenta k. The
parameter r0 is the minimal length in the theory and we assume that r0 � p−1

F . So, the momenta
k are cut by the maximal momentum kc = r−1

0 and we avoid double counting when calculating
the partition function Z .

Introducing the cut-off r0 means that the pairs written in equation (7) vary slowly in space.
Accordingly, we neglect the dependence of V1 and V2 on the momentum k in equation (7).
Although smaller than the Fermi momentum pF and the Fermi energy εF, the cut-off kc is
larger than all other momenta in the model.

Additional decoupling in the Cooper channel is not included, since this would amount to
overcounting of relevant scattering processes [31]. To be brief, the most important is parallel
or antiparallel motion of the particles and one needs to consider only forward and backward
scattering. In this limit, adding the Cooper channel would mean double counting. This is not
so for disordered systems, where all scattering angles are important and where one should take
into account the Cooper channel [33].

For a short range potential we can further simplify our considerations by setting V2 =
V (|q| � pF). Since important momenta are close to the Fermi surface we can write
V1(θ12) = V (p1 − p2) = V (2p0 sin( θ12

2 )), where θ12 is the angle between momenta p1 and
p2, θ12 = p̂1p2.

For the further development of the theory it will be crucial to separate explicitly
interactions in the triplet and singlet channel. Making the notations

Vs(θ12) = V2 − 1
2 V1(θ12), Vt(θ12) = 1

2 V1(θ12) (10)

one can represent the interaction term in the form of a sum of charge and spin parts,

S̃int = Sint,s + Sint,t , (11)

Sint,s = 1
2

∫
dp1 dp2 dq ρ(p1,−q)Vs(θ12)ρ(p2, q), (12)

Sint,t = − 1
2

∫
dp1 dp2 dq S(p1,−q)Vt(θ12)S(p2, q), (13)
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where the charge ρ(p, q) and spin densities S(p, q) are

ρ(p, q) = χ†

(
p − q

2

)
χ

(
p + q

2

)
, S(p, q) = χ†

(
p − q

2

)
σχ

(
p + q

2

)
, (14)

and we have changed to a spinor notation χ = (χ↑, χ↓).
In order to simplify the presentation we do not write for a while the function f assuming

that the variables ρ and S are not equal to zero for small q only, which corresponds to a slow
variation of these variables in space.

Having written the interaction term S̃int in the form of equation (11) we next decouple it
using a Hubbard–Stratonovich transformation with a field

φn(x) ≡ iϕn(x) + σhn(x). (15)

Here ϕn(x) and hn(x) are real bosonic fields, so that φn(r, τ ) = φn(r, τ + β) and n is the
direction of momentum p on the Fermi surface, n = p/|p|. The result is the following
representation of the partition function (we omit for a while the external field b):

Z =
∫

DφWs [ϕ]Wt [h]Z[h, ϕ]. (16)

The weight functions Ws , Wt are shown below in equations (20) and (21). The partition
function Z[h, ϕ] describes the fermion motion for a fixed configuration of fields h, ϕ

Z[φ] =
∫

D(χ∗, χ) exp(−Seff[φ]) (17)

where the effective action Seff has the form

Seff[φ] = S0 +
∫

dp dr1 dr2 χ
† (r1, τ )φn

(
r1 + r2

2

)
χ(r2, τ )e

ip(r1−r2). (18)

Now we can write down a representation of the partition function in the presence of the
magnetic field as a weighted integral over field configurations

Z =
∫

DφWs [ϕ]Wt [h]Z[φ], (19)

where the weights Ws[ϕ] and Wt [h] are

Ws [ϕ] = exp

[
− 1

2

∫
dn̂1 dn̂2 dq dτ ϕ∗

n1
(q, τ )V −1

s (θ12)ϕn2(q, τ )
]

(20)

Wt [h] = exp

[
− 1

2

∫
dn̂1 dn̂2 dq dτ h†

n1
(q, τ )V −1

t (θ12)hn2(q, τ )
]
. (21)

Equations (16)–(21) are the final result of this subsection. We see that the original problem
of the electron with interaction is replaced by a problem of electron motion in a potential and a
magnetic field slowly varying in space. The condition of the slow variations follows from our
separation into slow pairs. As we will see, at low temperature and weak interactions the slow
variations of the fields h and ϕ give the main contribution to the physical quantities.

2.2. Quasiclassical equations

What we should do is to calculate quantities for any h and ϕ and integrate these quantities over
these fields. First, we introduce the Green functions Gφ

σ,σ ′(x, x ′) corresponding to the action
Seff[φ], equation (18), as follows:

Gφ

σ,σ ′(x, x ′) = Z−1[φ]
∫

χσ (x)χ
∗
σ ′(x ′) exp(−Seff[φ])Dχ Dχ∗. (22)

5
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As the fluctuating field φ, equation (15), varies slowly in space one can derive
quasiclassical equations for the function Gφ

σ,σ ′(x, x ′). The method of the derivation is well
known [34]. One should perform the Fourier transform with respect to the difference r − r′
and assume that the Green function slowly depends on R = (r + r′)/2. Introducing the
quasiclassical Green function gφ

n (R, τ, τ ′) in the standard way [34, 35]

gφ
n (R, τ, τ ′) = i

∫ ∞

−∞
Gφ

p(R, τ, τ ′)
dξ

π
, ξ = p2

2m
− εF (23)

we come to the following equation for this function:(
∂

∂τ
+ ∂

∂τ ′ − ivFn∇
)

gφ
n (R, τ, τ ′) + gφ

n (R; τ, τ ′)φn(R, τ ′) − φn(R, τ )gφ
n (R; τ, τ ′) = 0

(24)

where n2 = 1, such that pFn is a vector on the Fermi surface.
In principle, one could derive equation (24) more accurately, which would produce

additional terms containing space derivatives of the functions φn(R, τ ) and gφ
n (R; τ, τ ′) in

the second line. However, the additional derivatives would compensate infrared singularities
we are interested in. This is the reason why we neglect them. At the same time, no higher
derivatives arise in the first line in equation (24) and this term is exact.

The function gφ
n (R, τ, τ ′) must obey the antiperiodicity conditions

gφ
n (R, τ, τ ′) = −gφ

n (R, τ + 1/T, τ ′) = −gφ
n (R, τ, τ ′ + 1/T ) (25)

that follow from equation (4).
Equation (24) is linear and therefore is not sufficient to find gφ

n (R, τ, τ ′) unambiguously.
However, the same equation as equation (24) can be written for the function g2

g2(R, τ, τ ′) =
∫ 1/T

0
gφ

n (R, τ, τ ′′)gφ
n (R, τ ′′, τ ′) dτ ′′. (26)

An obvious solution for g2 can be written as

g2(R, τ, τ ′) = cδ(τ − τ ′) (27)

where c is an arbitrary constant. It can be fixed assuming that the fermion–fermion interaction
is present only in a finite, although macroscopic, part of the space. Then, outside this space we
come to the Green function of a free fermion gas satisfying equation (27) with c = 1. So, we
come to the equation∫ 1/T

0
gφ

n (R, τ, τ ′′)gφ
n (R, τ ′′, τ ′) dτ ′′ = δ(τ − τ ′). (28)

Equation (28) complements equation (24) and these equations are sufficient to find the function
gφ

n (R, τ, τ ′) for any function φp(R, τ ). After this, in order to calculate physical quantities,
one should perform a proper averaging over φp(R, τ ) with the weights Ws,t [φ], equations (20)
and (21). In the next subsection we will show how to express the partition function Z[φ],
equation (17), in terms of the solution of these equations but now let us reduce equations (24)
and (28) to a more simple form.

Now we come to the main point of the method proposed here. We notice that the
quasiclassical Green function of the free fermion gas is singular and can be written as

g0n(τ − τ ′) = −iT Re[sin−1 πT (τ − τ ′ − iδ)] (29)

where δ → +0. Of course, the Green function g0n(τ − τ ′) satisfies equations (24), (25)
and (28).

6
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As concerns arbitrary φn(R, τ ), we look for the general solution of equations (24) and (28)
in the following form:

gφ
n (R, τ, τ ′) = Tn(R, τ )g0(τ − τ ′)T −1

n (R, τ ′) (30)

where Tn(r, τ ) is a spin matrix satisfying the condition

Tn(R, τ ) = Tn(R, τ + 1/T ). (31)

The representation of the Green function in the form of equation (30) is a generalization of
the Schwinger ansatz [36]. The form given by equation (30) is consistent with equation (28),
and what remains to be done is to find the proper matrix Tn(R, τ ), such that equation (24) is
satisfied.

A straightforward manipulation [31] enables one to reduce equations (24) and (28) to the
following form:(

− ∂

∂τ
+ ivFn∇R

)
Mn(x) + [φn(x), Mn(x)] = −∂φn(x)

∂τ
(32)

where

Mn(x) = ∂Tn(x)

∂τ
T −1

n (x) (33)

and the symbol [, ] stands for the commutator.
Using the representation equation (15) for the matrix φn(x) and writing the matrix Mn(x)

as

Mn(x) = ρn(x) + Sn(x)σ , (34)

where ρn(x) is a scalar function and Sn(x) is a three-dimensional vector, we reduce
equation (32) to two independent equations for ρn(x) and Sn(x),(

− ∂

∂τ
+ ivFn∇R

)
ρn(x) = −i

∂ϕn(x)

∂τ
(35)

(
− ∂

∂τ
+ ivFn∇R

)
Sn(x) + 2i[hn(x) × Sn(x)] = −∂hn(x)

∂τ
. (36)

Equations (35) and (36) are the final quasiclassical equations that will be used for further
calculations. We emphasize that equations (35) and (36) are obtained from equations (24)
and (28) without making any approximation. The variable ρn(x) describes collective density
excitations, whereas the variable Sn(x) stands for spin ones.

Equations (35) and (36) describing these excitations are remarkably different from each
other. Equation (35) for the density is rather simple. This is what one obtains using the high
dimensional bosonization of [21, 22, 6, 23–25, 27, 28, 5] from an eikonal equation. Of course,
we could take into account gradients of the field ϕn(x) and this would lead to additional terms
in the LHS of equation (35). However, this does not lead to new physical effects.

In contrast, equation (36) is highly non-trivial due to the presence of hn(x) in the LHS of
the equation. Actually, the homogeneous part of equation (36) is just the equation of motion
of a classical magnetic moment in the external magnetic field. We will see that the form of
equation (36) will result in very non-trivial effects that will be considered later.

The presence of the second term in the LHS of equation (36) is a consequence of a non-
Abelian character of the variables describing the spin excitations. In this respect our method
resembles the non-Abelian bosonization well known for one-dimensional systems [29].

It is important to emphasize that the variables ρn(x) and Sn(x) depend not only on the
time and coordinate but also on the position of the vector n, that determines the position on
the Fermi surface. This dependence is usual for kinetic equations. In the previous attempts
to construct a higher dimensional bosonization [21, 22, 6, 23–25, 27, 28, 5] the corresponding
variable arose from a ‘patching’ of the Fermi surface.

7
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2.3. Partition function

What remains to be done is to express the partition function Z[�], equations (17) and (18),
in terms of the variables ρn(x) and hn(x). Integrating over χ , χ∗ in equation (17) and using
equations (18) and (3) for Seff[φ] we write Z[φ] in the form

Z[φ] = exp

[
Tr
∫

ln

(
− ∂

∂τ
− p̂2

2m
+ εF + φn(x)

)
dx

]
. (37)

Equation (37) can further be represented as

Z[φ] = Z0 exp

[
Tr
∫ ∫ 1

0
Gφ(x, x; u)φn(x) dx du

]
(38)

where the Green function Gφ(r, r; τ, τ ; u) is the solution of the equation(
− ∂

∂τ
− p̂2

2m
+ εF + uφn(x)

)
Gφ(x, x ′; u) = δ(x − x ′). (39)

We see that the calculation of the partition function reduces to the calculation of the Green
function Gφ(x, x ′; u), that differs from the Green functions calculated in the preceding
subsection by the replacement φ(x) → uφ(x), where u is a parameter in the interval (0, 1).
This means that calculating the Green function we can repeat all the transformations we have
performed previously.

The Green function Gφ(r, τ ; r, τ ′; u) at coinciding points can be written in terms of the
quasiclassical Green function gφ

n as

Gφ(x, x ′; u) = −iπν

∫
gφ

n (r; τ, τ ′; u) dn (40)

where ν is the density of states on the Fermi surface (without taking into account the double
degeneracy due to spin).

Next, we use the representation equation (30), and expand the function T −1
n (r, τ ′) in τ ′−τ .

The contribution from g0n(τ − τ ′), equation (29), vanishes at τ = τ ′. Using equations (33)
and (34) we obtain finally

Z[φ] = Z0ZϕZh (41)

where

Zϕ = exp

[
−2iν

∫ ∫ 1

0
ρn(x, u)ϕ(x) dx dn du

]
, (42)

Zh = exp

[
−2ν

∫ ∫ 1

0
Sn(x, u)hn(x) dx dn du

]
. (43)

The functions ρn(x, u) and Sn(x, u) should be found from the equations

L̂u=0(n)ρn(x) = −iu
∂ϕn(x)

∂τ
, L̂u(n)Sn(x) = −u

∂hn(x)

∂τ
. (44)

In equation (44), the operator L̂u has the form

L̂u(n) = − ∂

∂τ
+ ivF(n∇r) + 2iuĥ (45)

where the matrix ĥ is

ĥ =
( 0 −hz hy

hz 0 −hx

−hy hx 0

)
(46)

and hx , hy , and hz are the components of the vector h (ĥa = [h × a] for any vector a).

8
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The functions Sn(x) and ρn(x) are periodic in τ

Sn(r, τ ) = Sn(r, τ + 1/T ). (47)

The accuracy of equations (20) and (21) can be somewhat improved by making the
substitution Vs,t → �̂s,t/ν, where �̂s,t is the scattering amplitude for the singlet and triplet
channels respectively.

Thus, we have reduced the study of the system of the interacting fermions to investigation
of a system of bosonic density and spin excitations. Therefore the word ‘bosonization’ is
most suitable for our approach. We see that the method should work in any dimension.
At the same time, it is more general than the scheme of the high dimensional bosonization
of [21, 22, 6, 23–25, 27, 28, 5] because we can consider the spin excitations, that are much more
interesting than the density ones. The presence of the non-trivial third term in equations (36)
and (45) is a consequence of the non-Abelian character of the excitations. In contrast, the
previous schemes worked only for Abelian density excitations and it is simply impossible to
write any interaction of ρ with an external field ϕ without using time or space derivatives.

3. Effective field theory and renormalization group equations

3.1. Infrared logarithmic divergences

Equations (41)–(47) and (19)–(21) are sufficient for calculating low energy contributions to the
thermodynamic quantities. Calculation for the density excitations is not difficult because the
first equation (44) can easily be solved explicitly. As concerns the spin excitations one may
seek the solution of the second equation (44) expanding the operator Lu , equation (44), in ĥ. It
turns out that in the limit T → 0 terms of the perturbation theory for scattering amplitudes are
logarithmically divergent in any dimension and one has to sum an infinite series.

In order to see the origin of this divergence, let us consider the expression K (n,−n′) =∫
L−1

u (n; x, x ′)L−1
u (−n′; x ′, x) dx ′. Using the Fourier transform in the coordinates and time

we bring this expression in the limit T → 0 to the form

K (n,−n′) =
∫

dω dd k
(2π)d+1

1

iω − vFkn
1

iω + vFkn′ . (48)

If n is parallel to n′ we can integrate separately over the parallel k‖ and perpendicular k⊥ (with
respect to the vector n) components of the vector k. In this case the integrand does not depend
on k⊥ and formally diverges at large |k⊥|. However, we assumed that the momenta cannot
be very large and therefore the maximal |k⊥| are of the order of r−1

0 from equation (9), which
provides the convergence of the integral over k⊥.

In contrast, the integral over ω and k‖ diverges at small values of these variables. These are
infrared divergences and they lead to important contributions to the thermodynamic quantities.
Estimating the value of K we come to the following expression:

K (n,−n′) ∼ r 1−d
0 v−1

F ln(max{T v−1
F r0, |n − n′|}). (49)

Products of the function K (n,−n′) arise when calculating scattering amplitudes with the help
of the perturbation theory and we see that in the limit T → 0 one should sum an infinite
series. This is not an easy task but the consideration simplifies if we reformulate the problem
of calculation of the partition function in terms of a field theory. Then we will be able to use
for summation of the logarithms a renormalization group technique.

9
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3.2. Low energy supersymmetric field theory

Now, our task is to solve equations (44), substitute the solution into equations (41), (43) and,
using the obtained expression for Z[φ], calculate the integral over the fields ϕn and hn. This
procedure is somewhat similar to what one does in theory of disordered metals. A convenient
way of calculations is to represent the solutions of equations (44) in a form that would allow
one to integrate over the fields ϕn at the beginning of all the calculations. Integration over
supervectors [37, 38] is most convenient for this purpose and we now follow this method.
As the contribution of the density fluctuations is simple, we consider from now on the spin
excitations only. The contribution of the density excitations will be added in the final results.

Using supervectors ψ and formulae for Gaussian integration we represent the partition
function Zh, equation (43), as follows [31]:

Zh =
∫

exp

[
2ν

√
2i
∫

ψ(X)F(X) dX

]
exp[−Sh[ψ]]Dψ (50)

where

Sh[ψ] = −2iν
∫

ψ(X)Hψ(X) dX, H = H0 − 2iuĥ(X)τ3. (51)

The weight denominator in the Gaussian integral, equation (50), is absent because the ψ are
supervectors. Although the general form of equations (50) and (51) is simple (it is a Gaussian
integral), the detailed structure of the vectors and matrices is not. The supervectors ψ have
48 components. The number of components comes from the necessity to consider (1) three
spin components (s-space), (2) bosonic and fermionic variables (g-space), (3)‘particles’ and
‘holes’ (eh-space), (4) ‘left’ and ‘right’ motion (n-space), (5) one should double the number
of the components to ‘Hermitize’ the space (H -space). The operator L̂u(n), equation (45), is
not Hermitian and the ‘Hermitization’ of the space of the supervectors is necessary to provide
convergence of the Gaussian integral in equation (50).

The supervectors ψ are assumed to satisfy the bosonic periodicity conditions

ψ(τ) = ψ(τ + 1/T ). (52)

We emphasize that equation (52) holds for both the bosonic and fermionic components of the
supervectors ψ .

The generalized coordinate X contains the components

X = (x, z), z = (n, u) (53)

where n is now a unit vector, n2 = 1, parallel to the original vector n but having only positive
x components nx > 0. Negative x-components are taken into account by doubling the number
of components of the supervector ψ (n-space).

The operator H0 in equation (51) can be written as

H0 = −ivF(n∇)τ3�3 − �1
∂

∂τ
(54)

where �1 is the first Pauli matrix in the Hermitized space (it is unity in all the other spaces)
and the matrices τ3 and �3 are the third Pauli matrices in the eh and n spaces respectively

�1 =
(

0 1
1 0

)
H

, τ3 =
(

1 0
0 −1

)
eh

, �3 =
(

1 0
0 −1

)
n

. (55)

The matrix ĥ(X) has the spin structure of equation (46) (the replacement n → n�3 should
be made) and is unity in all other spaces. The action Sh[ψ] is supersymmetric and is invariant
under homogeneous rotations in the superspace.

10
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The supervector ψ̄ in equation (50) is conjugated with respect to ψ (see for the
definition [31]). The vector F has the form

Fh(X) = F1
h(X) + F2

h(X) (56)

where

F1
hγ = 1√

2

(
0
1

)
g

⊗
(

1
1

)
H

⊗
(

0
1

)
eh

⊗
(

hγ (n)
hγ (−n)

)
n

F2
hγ = 1√

2

(
0
1

)
g

⊗
(

1
−1

)
H

⊗
(

1
0

)
eh

⊗
(

u∂τhγ (n)
u∂τhγ (−n)

)
n

and γ = x, y, z stands for the spin indices.
We see ((50), (51), (56)) that the Hubbard–Stratonovich field h(X) enters both H and F

linearly. We write the contribution of the spin excitations Zt to the partition function as

Zt =
∫

ZhWt [h]Dh, (57)

(cf equation (19)), which enables us to integrate immediately over h.
The integration over h is Gaussian and can easily be performed. As a result, we obtain

an effective action S containing not only the free quadratic part but also cubic and quartic
interactions

Zt =
∫

Dψ exp(−S), S = S0 +
∑

a=1,2,3

Sa . (58)

The interaction-independent part S0 equals

S0 = −2iν
∫

dX ψα(X)H0ψα(X). (59)

The three different interaction terms present in the theory can be written as

S2 = −iν
4∑

i, j=1

λi j

∫
dX dX1(ψδ(X)τ3� j∂XF0)�

i
X,X1

(F0∂X1� jτ3ψδ(X1)) (60)

S3 = −2
√−2iν

4∑
i, j=1

λi jεδβγ

∫
dX dX1(ψδ(X)uτ3� jψβ(X))�i

X,X1
(F0∂X1τ3ψγ (X1)) (61)

S4 = −2ν
4∑

i, j=1

λi jεδβγ εδβ1γ1

×
∫

dX dX1(ψβ(X)uτ3� jψγ (X))�i
X,X1

(ψβ1
(X)u1τ3� jψγ1(X1)). (62)

Summation over spin indices α, β, δ, γ is implied and we use the absolutely antisymmetric
tensor εαβγ with ε123 = 1. The action S, equations (58)–(62), is sufficient for calculation of the
thermodynamic potential in the absence of a magnetic field. The operator �i

X,X ′ has the form

�i
X,X ′ = γi(n̂n′) f (r − r′)δ(τ − τ ′) (63)

and

γ1(n̂n1) =
(

νV̂t

1 − 2νV̂t

)
(n̂,n1) ≡ γf (64)

γ2(n̂n1) =
(

νV̂t

1 − 2νV̂t

)
(n̂,−n1) ≡ γb (65)

11
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where f (r) is the cut-off function introduced in equations (8) and (9). The operator ∂X in
equations (60)–(62) has the form

∂X (α) =
(

1 0
0 u∂τ

)
eh

. (66)

As we will see, the most interesting contribution comes from n and n1 nearly parallel to
each other. This justifies the notations γf and γb standing for the bare forward and backward
scattering.

The matrices �i equal

�1 = 1, �2 = �3, �3 = �1τ3, �4 = �1τ3�3 (67)

and

λi j =
⎛
⎜⎝

1 1 −1 −1
1 1 1 1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎠ . (68)

The vector F0 in equations (60)–(62) has the form

F0 = 1√
2

(
0
1

)
g

(
1
1n

)
⎛
⎜⎜⎝

(
1
1

)
eh(−1

1

)
eh

⎞
⎟⎟⎠

H

. (69)

The vector F0 projects on the bosonic sector and its presence violates the supersymmetry of
the terms Sa , a = 2, 3.

The action S, (59)–(62) has the cubic and quartic interaction terms and looks quite
complicated. Nevertheless, explicit calculations are not very difficult because perturbation
theory in the interaction is logarithmic (see equations (48) and (49)) in all dimensions d =
1, 2, 3. In order to sum up the logarithms we use a renormalization group scheme.

At the end of this subsection we write additional terms in the action arising due to an
external magnetic field b acting on spins. Writing these terms is necessary for calculation of
the spin susceptibility. These terms can be brought to the form [32]

Sb0 = −νη

∫
dx b2(x) (70)

Sb1 = −2ν
√−2iη

∫
dX bδ(x)(ψX,δτ3∂XF0) (71)

Sb2 = 4νεδβγ η
∫

dX bδ(x)(ψX,βuτ3ψX,γ ). (72)

In these expressions

η = 1

1 − 2νVt

, (73)

where the bar in Vt means averaging over the full solid angle.

3.3. Renormalization group equations and their solutions

We use a standard momentum shell renormalization group scheme. Separating fast and slow
fields in the action we integrate over the fast fields and determine in this way the flow of
coupling constants as a function of a running cut-off. In our case this amounts to a re-
summation of the perturbation theory in the leading logarithmic approximation. We assume
during the renormalization that the coupling constants γ are small, γ � 1.

12
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In our case it convenient to define fast � and slow � fields with respect to the frequency
only. The reason is the anisotropy in momentum. As one can see, relevant momenta p‖
are of the order of ω/vF, while momenta p⊥ do not contribute to the logarithm and enter as
parameters. Thus, we write

ψ(X) = �(X) + �(X), (74)

where the fast fields � have the frequencies ω in the interval,

κωc < |ω| < ωc

while the slow ones � carry frequencies

|ω| < κωc,

where ωc is the running cut-off and κ < 1. Fast modes are integrated over in the Gaussian
approximation using averages of the form

〈· · ·〉0 =
∫

d�(· · ·) exp(−S0[�]). (75)

This results in a change in S
δS[�] = − ln〈exp(−S[� + �])〉0 − S[�], (76)

that will now be determined explicitly.
The main object of the RG calculations that we start now is the Green function G0(k,n, ω)

corresponding to the bare action S0, equation (59). Calculating a Gaussian integral we obtain
easily the form of the Green function in the Fourier representation

G0(k,n, ω) = −4iν〈ψψ̄〉0 = 1

iω�1 + vFknτ3�3
(77)

where 〈· · ·〉0 stands for averaging with S0, equation (59).
The bare Green function, equation (77), has a non-trivial matrix structure. Therefore

renormalized vertices are also complicated and the form of the quadratic S2 and cubic terms S3

in the action, equations (60) and (61), is not most general. At the same time, the supersymmetric
terms S0 and S4 do not change their form under the renormalization. Actually, S0 does
not change in the first order and therefore we write the corresponding equations first for the
effective vertices γi(ξ), i = 1, 2, 3, 4, of the quartic interaction, where ξ is the running
logarithmic variable.

A detailed calculation has been performed in [31]. It turns out that only the vertices γ1 and
γ3 are non-trivially renormalized, whereas γ2 and γ4 remain equal to their bare values γ 0

2 = γf

and γ 0
4 = γb. At the same time, only γ3(ξ) enters the thermodynamic potential and we write

here the RG equation for γ3(ξ) only

dγ3(ξ)

dξ
= −[γ3(ξ)]2. (78)

The renormalization of the S2 and S3 terms is more complicated. In order to obtain a
closed system of RG equations one should write a more general form of the quadratic and
cubic interactions. This is because the renormalization of different elements in the particle–
hole space runs in a different way. As a result [31], there are two different cubic vertices β+

i
and β−

i and three quadratic vertices �++
i , �−−

i and �+−
i = �−+

i for all i = 1, 2, 3, 4. The
bare values of all these vertices can be found from equations (60), (61) and they are equal to γf

for i = 1, 2 and γb for i = 3, 4.
The vertices βi and �i do not renormalize for i = 2, 4 and remain equal to their bare

values. Moreover, the vertices �i do not renormalize for i = 1, too. The thermodynamic

13
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potential is determined solely by �3(ξ) and we write down the RG equations for i = 3 only.
We remind the reader that this value of i corresponds to the backward scattering.

The equations for the cubic vertices β±
3 (ξ) can be written as

dβ+
3 (ξ)

dξ
= −2γ3(ξ)β

+
3 (ξ); dβ−

3 (ξ)

dξ
= −γ3(ξ)β

−
3 (ξ). (79)

The equation for �++
3 (ξ) takes the form

d�++
3 (ξ)

dξ
= −2�++

3 (ξ)γ3(ξ) − 2[β+
3 (ξ)]2; (80)

whereas the equation for �±
3 (ξ) is

d�−+
3 (ξ)

dξ
= d�+−

3 (ξ)

dξ
= −2β−

3 (ξ)β+
3 (ξ). (81)

The equation for �−−
3 (ξ) can be written from the condition of the absence of ultraviolet

divergences, which follows from the invariance of the system under spin rotations. It takes
the form

�−−
3 (ξ)γ3(ξ) = [β−

3 (ξ)]2. (82)

Equations (78)–(82) can easily be solved and their solutions satisfying the boundary
conditions at ξ = 0 (when the vertices are equal to their bare values) take the form

γ3(ξ) = β−
3 (ξ) = �−−

3 (ξ) = 1

ξ∗
b + ξ

; (83)

β+
3 (ξ) = �+−

3 (ξ) = �−+
3 (ξ) = ξ∗

b

(ξ∗
b + ξ)2

; (84)

�++
3 (ξ) = 2ξ∗2

b

(ξ∗
b + ξ)3

− ξ∗
b

(ξ∗
b + ξ)2

, (85)

where we introduced the notation

ξ∗
b ≡ 1

γb
> 0

with the backscattering amplitude γb defined in equation (65). In equations (83)–(85) one
should write the final value of the ξ at which the renormalization stops. Its value can be written
as

ξ(θ; u, u1; r⊥) = u1uμd f̄ (r⊥) ln

[
min

(
1

θ
,

vF

r0T

)]
(86)

where θ is the angle between the vectors n and n1 and the function f̄ is the Fourier transform
of the function f (k‖ = 0,k⊥), equation (9), with respect to k⊥. The parameter μd is given by
μ1 = 2;μ2 = 4(pFr0)

−1;μ3 = 4π(pFr0)
−2.

One can see from equations (83)–(85) that all the relevant vertices decay as ξ grows. This
is usually referred to as the ‘zero-charge’ situation. If we start from small values of the vertices
(weak coupling) they become even smaller in the process of the renormalization and the one-
loop approximation used here is sufficient for writing the final results.
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4. Thermodynamic quantities

4.1. Specific heat

Calculation of thermodynamic quantities can be performed starting with a standard relation for
the thermodynamic potential �(T )

�(T ) = −T lnZ (87)

where Z is the partition function.
We have performed the renormalization group calculations for the case when the vectors

n and n′ of two spin excitations were close to each other (parallel or antiparallel motion).
Only in this limit does one obtain large logarithms that determine the renormalization of the
vertices. A crucial question is whether or not this narrow region of the parameters can bring
an important contribution to thermodynamic or other physical quantities. This is not a trivial
question because the system was not assumed to be one-or quasi-one-dimensional and one
could imagine that all the effect of the singularities in the vertices would be washed out after
the summation over the whole phase space.

In fact, this almost parallel motion of the spin excitations does not contribute much to the
thermodynamic potential �(T ) itself. Fortunately, this is not a very interesting quantity and
what one would like to know are derivatives of the thermodynamic potential with respect to
temperature and other parameters. One of the most important thermodynamic quantities is the
specific heat C that can be expressed through the thermodynamic potential � as

C = −T
∂2�

∂T 2
. (88)

What we need is to calculate not the thermodynamic potential �(T ) itself but the
difference δ�(T ),

δ�(T ) = �(T ) − �(0). (89)

Using the diagrammatic method of the calculations we should be able to express the
thermodynamic potential �(T ) in terms of sums of products of the Green functions over
bosonic Matsubara frequencies ωn

�(T ) =
∑
ωn

R(ωn) (90)

where R(ωn) is a function of the frequency.
The sums of the type of equation (90) are very often divergent at high frequencies. This

problem can be avoided calculating the quantity δ�(T ), equation (89).
Using the Poisson formula we represent δ�(T ) in the form

δ�(T ) = 2
∞∑

l=1

∫
dω

2π
R(ω) exp

(
− ilω

T

)
(91)

which improves drastically the convergence. The essential frequencies in equation (91) are of
the order of T and are smaller than those frequencies that form logarithms in the vertices.

We calculate the partition function Zt using equation (58). If we kept in the action S[ψ]
the supersymmetric part S0[ψ] + S4[ψ], equations (59) and (62), only, we would get zero for
the thermodynamic potential �. The terms S2[ψ] and S3[ψ], equations (60) and (61), violate
the supersymmetry and, as a result, one obtains finite contributions to �.

The thermodynamic potential �(T ) can be expanded in terms of the renormalized action
S2[ψ] and the lowest orders of the expansion take the form

�(T ) = �1(T ) + �2(T ), (92)
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where

�1(T ) = T 〈S2[ψ]〉0, �2(T ) = − T

2
〈(S2[ψ])2〉0 (93)

and 〈· · ·〉0 means averaging over ψ with the Lagrangian S0[ψ], equation (59). The quantities
δ�1,2(T ) are obtained for �1,2(T ) by subtracting �1,2(0).

It turns out that the terms δ�1(T ) and δ�2(T ) lead to qualitatively different types of
contributions. In the first order in the interaction, only the forward scattering contributes. As
we have found in the previous subsection, the part of S2 corresponding to the forward scattering
is not renormalized and one may use just equation (60) for it. Then, we come to the expression

δC1

T
= π(3γf)

6vFλ
d−1
0

(94)

where λ0 differs from r0, equation (9), by a numerical coefficient. Actually, λ0 should be of the
order of the wavelength if one wants to make estimates for the initial model of the interacting
fermions. The factor 3 in the numerator is due to the fact that the spin-1 excitations have three
projections. A similar contribution comes also from the density excitations but, of course, with
the factor 1. Equation (94) describes a contribution of the interaction to the coefficient in front
of the linear dependence of the specific heat on temperature.

The part δ�2 consists of the part further renormalizing the coefficient C/T of the linear
dependence on T and a part giving corrections non-analytic in T 2. A general expression for
δ�2(T ) can be brought to the form

δ�2(T ) = −6 lim
η→+0

∞∑
l=1

∫
dω

(2π)
exp

(
−i

lω

T
− η|ω|

)

×
∫

dn1 dn2

∫
dd k

(2π)d
Y (θ; k⊥, k‖)Pd(ω,k; n1,n2) (95)

where θ is the angle between the vectors n1 and n2. The main interesting contribution will come
from small θ , which justifies the decomposition of the momentum k into perpendicular k⊥ and
parallel k‖ with respect to n1,2 components.

The function Y (θ; k⊥, k‖) defined as

Y (θ; k⊥, k‖) =
∫ 1

0

∫ 1

0
u1u2 du1 du2{[�+−

3 (θ; u1, u2; k⊥, k‖)]2

+ �++
3 (θ; u1, u2; k⊥, k‖)�−−

3 (θ; u1, u2; k⊥, k‖)} (96)

is the most important entry in the final expression for the specific heat. The vertices �3 should
be taken from equations (84)–(86).

The form factor

Pd(ω,n1,n2) = (iω + vFn2)(iω − vFn1)

(iω − vFn2)(iω + vFn1)
(97)

depends on the dimensionality of the system and it describes basically the free propagation of
the two spin excitations in almost opposite directions. The non-analytic contributions originate
from the small region of the phase space |n1 − n2| � 1.

The result of the calculation depends on the dimensionality of the system but the non-trivial
corrections exist in both d = 2 and 3. The details of the calculations can be found in [31] but
the final results for the non-analytic corrections δC to the specific heat look for d = 2 and 3
like

δCd=2 = −3ζ(3)T 2

πε2
F

{
[γ ρ

b ]2 + 12γ 2
b ln2[1 + X (T )/2]

X 2(T )

}
(98)
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δCd=3 = −3π4

10

(
T

εF

)3{
[γ ρ

b ]2 ln
εF

T
+ 6πγb

μ3

∫ X (T )

2π

0

dz

z2
[Li2(−z)]2

}
(99)

where X (T ) = μdγb ln(ε0/T ) (ε0 = vF/r0 � εF) and Li2(x) = ∑∞
k=1 xk/k2 is the

polylogarithm function. The first terms in the circular brackets in equations (98) and (99)
describe the density excitations and γ

ρ

b is the coupling constant for the backward scattering
of these excitations. The second terms originate from the spin excitations. The final result,
equations (98) and (99), was written for a special choice of the cut-off function f̄ (r⊥),
equation (86),

f̄ (r⊥) = �−1
d exp(−r⊥/r0) (100)

where �d is the (d − 1)-dimensional solid angle (�1 = 2,�2 = 2π ).
In the limit of not very low temperatures when X (T ) � 1, equations (98) and (99) take a

simpler form

δCd=2 = −3ζ(3)

π

(
T

εF

)2

([γ ρ

b ]2 + 3γ 2
b ) (101)

δCd=3 = −3π4

10

(
T

εF

)3

ln

(
εF

T

)
([γ ρ

b ]2 + 3γ 2
b ). (102)

Equations (101) and (102) agree with results obtained by a direct diagrammatic expansion (see
for a recent discussion [17, 18]). At the same time, the general equations (92) and (93) have
been obtained for the first time in [31] using the bosonization scheme. We see that in the
limit T → 0 the contribution of the spin excitations vanishes and only the density excitations
contribute to the specific heat.

The bosonization method presented here gives a possibility to make calculations also
for one-dimensional systems. Surprisingly, the calculation of the 1D specific heat is more
complicated than for d = 2, 3. This is because the function Pd(ω,n1,n2), equation (97), is
exactly equal to unity and the contribution of equation (95) to the specific heat vanishes. In
order to obtain a non-vanishing contribution one should consider terms of higher orders in the
effective vertices. As a result, one comes to the following expression for the correction to the
specific heat in d = 1:

δCd=1 = πT

vF

1

(1 + 2γb ln εF
T )3

. (103)

The correction to the specific heat for 1D can be extracted from the exact solution for spin
chains of [39]. This correction agrees with our result, equation (103), and we see that our
supersymmetric low energy theory reproduces all the previously known physical effects despite
the fact that the intermediate degrees of freedom differ from the conventional bosonization.

4.2. Spin susceptibility

Calculation of the spin susceptibility has been performed in a recent work [32]. The
bosonization scheme of [31] was used and it was shown that the logarithmic contributions
arise as well. An external magnetic field b leads to the additional terms Sb0,Sb1 and Sb2,
equations (70)–(72), in the effective action.

We proceed as before integrating over the fast variables �, equation (74) and thus deriving
renormalization group equations. In principle, one should renormalize not only the terms
S2,S3,S4, equations (60)–(62), as was done previously, but also the terms Sb0,Sb1 and Sb2,
equations (70)–(72) and S0, equation (59). Again, the calculations should be done separately
for d = 1 and d = 2, 3.
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It turns out that in the higher dimensions d = 2, 3 the terms Sb0,Sb1 and Sb2 and S0 do not
change under the renormalization and what remains to be done is to express the susceptibility
χ in terms of the renormalized vertices γ (ξ), β(ξ) and �(ξ). The computation is somewhat
more cumbersome than the one for the specific heat and there are many contributions that have
to be combined together. As for the specific heat, only the vertices with i = 3 contribute and
one can express the susceptibility through γ3(ξ), β3(ξ) and �3(ξ).

Using the solutions of the RG equations, equations (83)–(85), one can bring the expression
for the susceptibility to a form containing the function Y (θ; k⊥, k‖), equation (96). Choosing
again the cut-off function f̄ in the form of equation (100) we bring the temperature dependent
correction δχ(T ) to the spin susceptibility to the form [32]

δχd=2(T ) = 8η2γ 2
b

T

εF
χ

(0)
d=2

ln2[1 + X (T )/2]
X 2(T )

(104)

δχd=3(T ) = (2π2η)2

3
γ 2

b

(
T

εF

)2

χ
(0)
d=3

{Li2[−X (T )/2π]}2

X 2(T )
(105)

where η is given by equation (73). The susceptibility χ
(0)
d is the Pauli susceptibility in d

dimensions.
In the limit X (T ) � 1 one can neglect the logarithmic contributions and obtain the

following form of the corrections δχd :

δχd=2(T ) = 2η2γ 2
b

T

εF
χ

(0)
d=2 (106)

δχd=3(T ) = π2

3
η2γ 2

b

(
T

εF

)2

χ
(0)
d=3. (107)

The linear dependence on T of the correction χ(T ), equation (106), agrees with those obtained
by conventional methods [13–15, 19]. At the same time, the proportionality of δχ(T ) to T 2 in
d = 3 is analytical in T 2 and equation (107) describes a renormalization of a coefficient in front
of the T 2. As the T 2-term is present already in the temperature dependence of the susceptibility
of the ideal Fermi gas, the correction is not very interesting. The first non-analytical term
T 2 ln(εF/T ) in the temperature dependence in d = 3 is proportional to γ 3

b .
Calculation of the susceptibility for one-dimensional systems is somewhat more involved

because one should consider corrections to the terms Sb0,Sb1 and Sb2, equations (70)–(72),
and S0, equation (59). Nevertheless, one can proceed in a rather straightforward way and, as a
result, the following dependence of the susceptibility is obtained [32]:

δχd=1(T ) = 2νγb

1 + 2γb ln(εF/T )
. (108)

This result agrees the with the one obtained long ago [40] by a completely different RG method
developed for the electron problem in 1D. So, equation (108) serves as one more check of the
bosonization method reviewed here.

5. Discussion

In the previous sections we reviewed the new method of bosonization for a clean Fermi
gas in any dimensions suggested in [31] and further used in [32]. In contrast to previous
attempts [21, 22, 6, 23–25, 27, 28, 5], we do not restrict ourselves to the case of a long
range electron–electron interaction and include in the scheme spin degrees of freedom. This
enables us to consider not only density excitations but also the spin ones. In contrast to the
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density excitations that can be described by a scalar, the spin excitations are described by three-
component vectors and one may speak about a new version of the non-Abelian bosonization.

The non-Abelian character of the effective theory leads to the non-trivial interaction
between the spin modes. Making the perturbation theory in this interaction new logarithmic
contributions (diverging in the limit T → 0) to vertices were discovered and summed up
using a RG scheme. As a result of this consideration we have found temperature dependent
corrections δC(T )/T to the specific heat and to the susceptibility δχ(T ) in all dimensions,
equations (98), (99), (103), (104), (105). The results for d = 1 agree with those obtained
earlier by completely different methods. In higher dimensions, d = 2, 3 the lowest order of
the expansion of our formulae in the coupling constant agrees with known results obtained
previously using conventional diagrammatic techniques, see e.g. [17, 18, 13–15, 19]. All these
agreements serve as a good check of our approach.

The new contributions to the specific heat and susceptibility originate from an almost
parallel motion of the spin excitations. Although both the forward and backward scattering
amplitudes are renormalized, only the backward scattering enters the thermodynamic
quantities.

In the language of conventional diagrams the logarithmic contributions to the
thermodynamic quantities come from both Cooper and particle–hole loops because they
originate from quasi-one-dimensional processes. The fact that the forward scattering amplitude
drops out from the final results corresponds to what happens in 1D.

Although we have agreement in the limiting cases with almost all the results we could
compare with, there is a disagreement with an old work [41], where an instability of the Fermi
liquid against superconducting pairing with a high angular momentum was found. This is
especially strange because the main contribution to the formation of the superconductivity
comes from almost parallel electron motion such that only forward and backward scattering
enter the superconducting critical temperature. This is just the region that we considered. As
we do not see any such effect, this can mean that either (1) the accuracy of our method is not
sufficient (we summed the terms like (γ ln(εF/T ))n , whereas (γ 2 ln(εF/T ))n were summed
in [41]) or (2) summing the Cooper ladder as was done in [41] is a bad approximation for the
quasi-one-dimensional process. This question deserves a more detailed study.

We have developed and applied the bosonization scheme for the simplest model of the
interacting Fermi gas. One can add other terms to the Hamiltonian of this model to take into
account different features relevant for experimental systems. The logarithmic contributions
discussed in the previous sections should be very pronounced near quantum phase transitions
into a magnetic state where the spin fluctuations may be very strong (for a recent review of such
systems see, e.g., [42]). The anomalous contributions of the spin excitations can be important in
doped Mott insulators (see e.g. [43]). A two-dimensional silicon metal–oxide–semiconductor
field effect transistor (Si-MOSFET) [44, 45] is one more system where the effects discussed in
the present paper can be important [46]. We hope that our scheme may be useful in study of
these systems.
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